April 4, 2021

Comparative analysis of biofilm models to determine the efficacy of antimicrobials

Authors

EK Stuermer, M Besser, FHH Brill, I Plattfaut, AL Severing, V Wiencke, JD Rembe, EA Naumova, A Kampe, S Debus, R Smeets

Bibliography

International Journal of Hygiene and Environmental Health Volume 234, May 2021, 113744, https://doi.org/10.1016/j.ijheh.2021.113744

Abstract

Biofilms are one of the greatest challenges in today's treatment of chronic wounds. While antimicrobials kill platonic bacteria within seconds, they are rarely able to harm biofilms. In order to identify effective substances for antibacterial therapy, cost-efficient, standardized and reproducible models that aim to mimic the clinical situation are required.

In this study, two 3D biofilm models based on human plasma with immune cells (lhBIOM) or based on sheep blood (sbBIOM) containing S. aureus or P. aeruginosa, are compared with the human biofilm model hpBIOM regarding their microscopic structure (scanning electron microscopy; SEM) and their bacterial resistance to octenidine hydrochloride (OCT) and a sodium hypochlorite (NaOCl) wound-irrigation solution.

The three analyzed biofilm models show little to no reaction to treatment with the hypochlorous solution while planktonic S. aureus and P. aeruginosa cells are reduced within minutes. After 48 h, octenidine hydrochloride manages to erode the biofilm matrix and significantly reduce the bacterial load. The determined effects are qualitatively reflected by SEM.

Our results show that both ethically acceptable human and sheep blood based biofilm models can be used as a standard for in vitro testing of new antimicrobial substances. Due to their composition, both fulfill the criteria of a reality-reflecting model and therefore should be used in the approval for new antimicrobial agents.